Start line:  
End line:  

Snippet Preview

Snippet HTML Code

Stack Overflow Questions
   package org.bouncycastle.math.ec;
   
   
   import java.math.BigInteger;
   
   class LongArray
   {
   //    private static long DEINTERLEAVE_MASK = 0x5555555555555555L;
  
      /*
       * This expands 8 bit indices into 16 bit contents (high bit 14), by inserting 0s between bits.
       * In a binary field, this operation is the same as squaring an 8 bit number.
       */
      private static final int[] INTERLEAVE2_TABLE = new int[]
      {
          0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
          0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
          0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
          0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
          0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
          0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
          0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
          0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
          0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
          0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
          0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115,
          0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155,
          0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415,
          0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
          0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
          0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
          0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
          0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
          0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115,
          0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
          0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
          0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
          0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
          0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
          0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
          0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
          0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115,
          0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
          0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
          0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
          0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
          0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555
      };
  
      /*
       * This expands 7 bit indices into 21 bit contents (high bit 18), by inserting 0s between bits.
       */
      private static final int[] INTERLEAVE3_TABLE = new  int[]
      {
          0x00000, 0x00001, 0x00008, 0x00009, 0x00040, 0x00041, 0x00048, 0x00049,
          0x00200, 0x00201, 0x00208, 0x00209, 0x00240, 0x00241, 0x00248, 0x00249,
          0x01000, 0x01001, 0x01008, 0x01009, 0x01040, 0x01041, 0x01048, 0x01049,
          0x01200, 0x01201, 0x01208, 0x01209, 0x01240, 0x01241, 0x01248, 0x01249,
          0x08000, 0x08001, 0x08008, 0x08009, 0x08040, 0x08041, 0x08048, 0x08049,
          0x08200, 0x08201, 0x08208, 0x08209, 0x08240, 0x08241, 0x08248, 0x08249,
          0x09000, 0x09001, 0x09008, 0x09009, 0x09040, 0x09041, 0x09048, 0x09049,
          0x09200, 0x09201, 0x09208, 0x09209, 0x09240, 0x09241, 0x09248, 0x09249,
          0x40000, 0x40001, 0x40008, 0x40009, 0x40040, 0x40041, 0x40048, 0x40049,
          0x40200, 0x40201, 0x40208, 0x40209, 0x40240, 0x40241, 0x40248, 0x40249,
          0x41000, 0x41001, 0x41008, 0x41009, 0x41040, 0x41041, 0x41048, 0x41049,
          0x41200, 0x41201, 0x41208, 0x41209, 0x41240, 0x41241, 0x41248, 0x41249,
          0x48000, 0x48001, 0x48008, 0x48009, 0x48040, 0x48041, 0x48048, 0x48049,
          0x48200, 0x48201, 0x48208, 0x48209, 0x48240, 0x48241, 0x48248, 0x48249,
          0x49000, 0x49001, 0x49008, 0x49009, 0x49040, 0x49041, 0x49048, 0x49049,
          0x49200, 0x49201, 0x49208, 0x49209, 0x49240, 0x49241, 0x49248, 0x49249
      };
  
      /*
       * This expands 8 bit indices into 32 bit contents (high bit 28), by inserting 0s between bits.
       */
      private static final int[] INTERLEAVE4_TABLE = new int[]
      {
          0x00000000, 0x00000001, 0x00000010, 0x00000011, 0x00000100, 0x00000101, 0x00000110, 0x00000111,
          0x00001000, 0x00001001, 0x00001010, 0x00001011, 0x00001100, 0x00001101, 0x00001110, 0x00001111,
          0x00010000, 0x00010001, 0x00010010, 0x00010011, 0x00010100, 0x00010101, 0x00010110, 0x00010111,
          0x00011000, 0x00011001, 0x00011010, 0x00011011, 0x00011100, 0x00011101, 0x00011110, 0x00011111,
          0x00100000, 0x00100001, 0x00100010, 0x00100011, 0x00100100, 0x00100101, 0x00100110, 0x00100111,
          0x00101000, 0x00101001, 0x00101010, 0x00101011, 0x00101100, 0x00101101, 0x00101110, 0x00101111,
          0x00110000, 0x00110001, 0x00110010, 0x00110011, 0x00110100, 0x00110101, 0x00110110, 0x00110111,
          0x00111000, 0x00111001, 0x00111010, 0x00111011, 0x00111100, 0x00111101, 0x00111110, 0x00111111,
          0x01000000, 0x01000001, 0x01000010, 0x01000011, 0x01000100, 0x01000101, 0x01000110, 0x01000111,
          0x01001000, 0x01001001, 0x01001010, 0x01001011, 0x01001100, 0x01001101, 0x01001110, 0x01001111,
          0x01010000, 0x01010001, 0x01010010, 0x01010011, 0x01010100, 0x01010101, 0x01010110, 0x01010111,
          0x01011000, 0x01011001, 0x01011010, 0x01011011, 0x01011100, 0x01011101, 0x01011110, 0x01011111,
          0x01100000, 0x01100001, 0x01100010, 0x01100011, 0x01100100, 0x01100101, 0x01100110, 0x01100111,
          0x01101000, 0x01101001, 0x01101010, 0x01101011, 0x01101100, 0x01101101, 0x01101110, 0x01101111,
          0x01110000, 0x01110001, 0x01110010, 0x01110011, 0x01110100, 0x01110101, 0x01110110, 0x01110111,
          0x01111000, 0x01111001, 0x01111010, 0x01111011, 0x01111100, 0x01111101, 0x01111110, 0x01111111,
          0x10000000, 0x10000001, 0x10000010, 0x10000011, 0x10000100, 0x10000101, 0x10000110, 0x10000111,
          0x10001000, 0x10001001, 0x10001010, 0x10001011, 0x10001100, 0x10001101, 0x10001110, 0x10001111,
          0x10010000, 0x10010001, 0x10010010, 0x10010011, 0x10010100, 0x10010101, 0x10010110, 0x10010111,
          0x10011000, 0x10011001, 0x10011010, 0x10011011, 0x10011100, 0x10011101, 0x10011110, 0x10011111,
          0x10100000, 0x10100001, 0x10100010, 0x10100011, 0x10100100, 0x10100101, 0x10100110, 0x10100111,
         0x10101000, 0x10101001, 0x10101010, 0x10101011, 0x10101100, 0x10101101, 0x10101110, 0x10101111,
         0x10110000, 0x10110001, 0x10110010, 0x10110011, 0x10110100, 0x10110101, 0x10110110, 0x10110111,
         0x10111000, 0x10111001, 0x10111010, 0x10111011, 0x10111100, 0x10111101, 0x10111110, 0x10111111,
         0x11000000, 0x11000001, 0x11000010, 0x11000011, 0x11000100, 0x11000101, 0x11000110, 0x11000111,
         0x11001000, 0x11001001, 0x11001010, 0x11001011, 0x11001100, 0x11001101, 0x11001110, 0x11001111,
         0x11010000, 0x11010001, 0x11010010, 0x11010011, 0x11010100, 0x11010101, 0x11010110, 0x11010111,
         0x11011000, 0x11011001, 0x11011010, 0x11011011, 0x11011100, 0x11011101, 0x11011110, 0x11011111,
         0x11100000, 0x11100001, 0x11100010, 0x11100011, 0x11100100, 0x11100101, 0x11100110, 0x11100111,
         0x11101000, 0x11101001, 0x11101010, 0x11101011, 0x11101100, 0x11101101, 0x11101110, 0x11101111,
         0x11110000, 0x11110001, 0x11110010, 0x11110011, 0x11110100, 0x11110101, 0x11110110, 0x11110111,
         0x11111000, 0x11111001, 0x11111010, 0x11111011, 0x11111100, 0x11111101, 0x11111110, 0x11111111
     };
 
     /*
      * This expands 7 bit indices into 35 bit contents (high bit 30), by inserting 0s between bits.
      */
     private static final int[] INTERLEAVE5_TABLE = new int[] {
         0x00000000, 0x00000001, 0x00000020, 0x00000021, 0x00000400, 0x00000401, 0x00000420, 0x00000421,
         0x00008000, 0x00008001, 0x00008020, 0x00008021, 0x00008400, 0x00008401, 0x00008420, 0x00008421,
         0x00100000, 0x00100001, 0x00100020, 0x00100021, 0x00100400, 0x00100401, 0x00100420, 0x00100421,
         0x00108000, 0x00108001, 0x00108020, 0x00108021, 0x00108400, 0x00108401, 0x00108420, 0x00108421,
         0x02000000, 0x02000001, 0x02000020, 0x02000021, 0x02000400, 0x02000401, 0x02000420, 0x02000421,
         0x02008000, 0x02008001, 0x02008020, 0x02008021, 0x02008400, 0x02008401, 0x02008420, 0x02008421,
         0x02100000, 0x02100001, 0x02100020, 0x02100021, 0x02100400, 0x02100401, 0x02100420, 0x02100421,
         0x02108000, 0x02108001, 0x02108020, 0x02108021, 0x02108400, 0x02108401, 0x02108420, 0x02108421,
         0x40000000, 0x40000001, 0x40000020, 0x40000021, 0x40000400, 0x40000401, 0x40000420, 0x40000421,
         0x40008000, 0x40008001, 0x40008020, 0x40008021, 0x40008400, 0x40008401, 0x40008420, 0x40008421,
         0x40100000, 0x40100001, 0x40100020, 0x40100021, 0x40100400, 0x40100401, 0x40100420, 0x40100421,
         0x40108000, 0x40108001, 0x40108020, 0x40108021, 0x40108400, 0x40108401, 0x40108420, 0x40108421,
         0x42000000, 0x42000001, 0x42000020, 0x42000021, 0x42000400, 0x42000401, 0x42000420, 0x42000421,
         0x42008000, 0x42008001, 0x42008020, 0x42008021, 0x42008400, 0x42008401, 0x42008420, 0x42008421,
         0x42100000, 0x42100001, 0x42100020, 0x42100021, 0x42100400, 0x42100401, 0x42100420, 0x42100421,
         0x42108000, 0x42108001, 0x42108020, 0x42108021, 0x42108400, 0x42108401, 0x42108420, 0x42108421
     };
 
     /*
      * This expands 9 bit indices into 63 bit (long) contents (high bit 56), by inserting 0s between bits.
      */
     private static final long[] INTERLEAVE7_TABLE = new long[]
     {
         0x0000000000000000L, 0x0000000000000001L, 0x0000000000000080L, 0x0000000000000081L,
         0x0000000000004000L, 0x0000000000004001L, 0x0000000000004080L, 0x0000000000004081L,
         0x0000000000200000L, 0x0000000000200001L, 0x0000000000200080L, 0x0000000000200081L,
         0x0000000000204000L, 0x0000000000204001L, 0x0000000000204080L, 0x0000000000204081L,
         0x0000000010000000L, 0x0000000010000001L, 0x0000000010000080L, 0x0000000010000081L,
         0x0000000010004000L, 0x0000000010004001L, 0x0000000010004080L, 0x0000000010004081L,
         0x0000000010200000L, 0x0000000010200001L, 0x0000000010200080L, 0x0000000010200081L,
         0x0000000010204000L, 0x0000000010204001L, 0x0000000010204080L, 0x0000000010204081L,
         0x0000000800000000L, 0x0000000800000001L, 0x0000000800000080L, 0x0000000800000081L,
         0x0000000800004000L, 0x0000000800004001L, 0x0000000800004080L, 0x0000000800004081L,
         0x0000000800200000L, 0x0000000800200001L, 0x0000000800200080L, 0x0000000800200081L,
         0x0000000800204000L, 0x0000000800204001L, 0x0000000800204080L, 0x0000000800204081L,
         0x0000000810000000L, 0x0000000810000001L, 0x0000000810000080L, 0x0000000810000081L,
         0x0000000810004000L, 0x0000000810004001L, 0x0000000810004080L, 0x0000000810004081L,
         0x0000000810200000L, 0x0000000810200001L, 0x0000000810200080L, 0x0000000810200081L,
         0x0000000810204000L, 0x0000000810204001L, 0x0000000810204080L, 0x0000000810204081L,
         0x0000040000000000L, 0x0000040000000001L, 0x0000040000000080L, 0x0000040000000081L,
         0x0000040000004000L, 0x0000040000004001L, 0x0000040000004080L, 0x0000040000004081L,
         0x0000040000200000L, 0x0000040000200001L, 0x0000040000200080L, 0x0000040000200081L,
         0x0000040000204000L, 0x0000040000204001L, 0x0000040000204080L, 0x0000040000204081L,
         0x0000040010000000L, 0x0000040010000001L, 0x0000040010000080L, 0x0000040010000081L,
         0x0000040010004000L, 0x0000040010004001L, 0x0000040010004080L, 0x0000040010004081L,
         0x0000040010200000L, 0x0000040010200001L, 0x0000040010200080L, 0x0000040010200081L,
         0x0000040010204000L, 0x0000040010204001L, 0x0000040010204080L, 0x0000040010204081L,
         0x0000040800000000L, 0x0000040800000001L, 0x0000040800000080L, 0x0000040800000081L,
         0x0000040800004000L, 0x0000040800004001L, 0x0000040800004080L, 0x0000040800004081L,
         0x0000040800200000L, 0x0000040800200001L, 0x0000040800200080L, 0x0000040800200081L,
         0x0000040800204000L, 0x0000040800204001L, 0x0000040800204080L, 0x0000040800204081L,
         0x0000040810000000L, 0x0000040810000001L, 0x0000040810000080L, 0x0000040810000081L,
         0x0000040810004000L, 0x0000040810004001L, 0x0000040810004080L, 0x0000040810004081L,
         0x0000040810200000L, 0x0000040810200001L, 0x0000040810200080L, 0x0000040810200081L,
         0x0000040810204000L, 0x0000040810204001L, 0x0000040810204080L, 0x0000040810204081L,
         0x0002000000000000L, 0x0002000000000001L, 0x0002000000000080L, 0x0002000000000081L,
         0x0002000000004000L, 0x0002000000004001L, 0x0002000000004080L, 0x0002000000004081L,
         0x0002000000200000L, 0x0002000000200001L, 0x0002000000200080L, 0x0002000000200081L,
         0x0002000000204000L, 0x0002000000204001L, 0x0002000000204080L, 0x0002000000204081L,
         0x0002000010000000L, 0x0002000010000001L, 0x0002000010000080L, 0x0002000010000081L,
         0x0002000010004000L, 0x0002000010004001L, 0x0002000010004080L, 0x0002000010004081L,
         0x0002000010200000L, 0x0002000010200001L, 0x0002000010200080L, 0x0002000010200081L,
         0x0002000010204000L, 0x0002000010204001L, 0x0002000010204080L, 0x0002000010204081L,
         0x0002000800000000L, 0x0002000800000001L, 0x0002000800000080L, 0x0002000800000081L,
         0x0002000800004000L, 0x0002000800004001L, 0x0002000800004080L, 0x0002000800004081L,
         0x0002000800200000L, 0x0002000800200001L, 0x0002000800200080L, 0x0002000800200081L,
         0x0002000800204000L, 0x0002000800204001L, 0x0002000800204080L, 0x0002000800204081L,
         0x0002000810000000L, 0x0002000810000001L, 0x0002000810000080L, 0x0002000810000081L,
         0x0002000810004000L, 0x0002000810004001L, 0x0002000810004080L, 0x0002000810004081L,
         0x0002000810200000L, 0x0002000810200001L, 0x0002000810200080L, 0x0002000810200081L,
         0x0002000810204000L, 0x0002000810204001L, 0x0002000810204080L, 0x0002000810204081L,
         0x0002040000000000L, 0x0002040000000001L, 0x0002040000000080L, 0x0002040000000081L,
         0x0002040000004000L, 0x0002040000004001L, 0x0002040000004080L, 0x0002040000004081L,
         0x0002040000200000L, 0x0002040000200001L, 0x0002040000200080L, 0x0002040000200081L,
         0x0002040000204000L, 0x0002040000204001L, 0x0002040000204080L, 0x0002040000204081L,
         0x0002040010000000L, 0x0002040010000001L, 0x0002040010000080L, 0x0002040010000081L,
         0x0002040010004000L, 0x0002040010004001L, 0x0002040010004080L, 0x0002040010004081L,
         0x0002040010200000L, 0x0002040010200001L, 0x0002040010200080L, 0x0002040010200081L,
         0x0002040010204000L, 0x0002040010204001L, 0x0002040010204080L, 0x0002040010204081L,
         0x0002040800000000L, 0x0002040800000001L, 0x0002040800000080L, 0x0002040800000081L,
         0x0002040800004000L, 0x0002040800004001L, 0x0002040800004080L, 0x0002040800004081L,
         0x0002040800200000L, 0x0002040800200001L, 0x0002040800200080L, 0x0002040800200081L,
         0x0002040800204000L, 0x0002040800204001L, 0x0002040800204080L, 0x0002040800204081L,
         0x0002040810000000L, 0x0002040810000001L, 0x0002040810000080L, 0x0002040810000081L,
         0x0002040810004000L, 0x0002040810004001L, 0x0002040810004080L, 0x0002040810004081L,
         0x0002040810200000L, 0x0002040810200001L, 0x0002040810200080L, 0x0002040810200081L,
         0x0002040810204000L, 0x0002040810204001L, 0x0002040810204080L, 0x0002040810204081L,
         0x0100000000000000L, 0x0100000000000001L, 0x0100000000000080L, 0x0100000000000081L,
         0x0100000000004000L, 0x0100000000004001L, 0x0100000000004080L, 0x0100000000004081L,
         0x0100000000200000L, 0x0100000000200001L, 0x0100000000200080L, 0x0100000000200081L,
         0x0100000000204000L, 0x0100000000204001L, 0x0100000000204080L, 0x0100000000204081L,
         0x0100000010000000L, 0x0100000010000001L, 0x0100000010000080L, 0x0100000010000081L,
         0x0100000010004000L, 0x0100000010004001L, 0x0100000010004080L, 0x0100000010004081L,
         0x0100000010200000L, 0x0100000010200001L, 0x0100000010200080L, 0x0100000010200081L,
         0x0100000010204000L, 0x0100000010204001L, 0x0100000010204080L, 0x0100000010204081L,
         0x0100000800000000L, 0x0100000800000001L, 0x0100000800000080L, 0x0100000800000081L,
         0x0100000800004000L, 0x0100000800004001L, 0x0100000800004080L, 0x0100000800004081L,
         0x0100000800200000L, 0x0100000800200001L, 0x0100000800200080L, 0x0100000800200081L,
         0x0100000800204000L, 0x0100000800204001L, 0x0100000800204080L, 0x0100000800204081L,
         0x0100000810000000L, 0x0100000810000001L, 0x0100000810000080L, 0x0100000810000081L,
         0x0100000810004000L, 0x0100000810004001L, 0x0100000810004080L, 0x0100000810004081L,
         0x0100000810200000L, 0x0100000810200001L, 0x0100000810200080L, 0x0100000810200081L,
         0x0100000810204000L, 0x0100000810204001L, 0x0100000810204080L, 0x0100000810204081L,
         0x0100040000000000L, 0x0100040000000001L, 0x0100040000000080L, 0x0100040000000081L,
         0x0100040000004000L, 0x0100040000004001L, 0x0100040000004080L, 0x0100040000004081L,
         0x0100040000200000L, 0x0100040000200001L, 0x0100040000200080L, 0x0100040000200081L,
         0x0100040000204000L, 0x0100040000204001L, 0x0100040000204080L, 0x0100040000204081L,
         0x0100040010000000L, 0x0100040010000001L, 0x0100040010000080L, 0x0100040010000081L,
         0x0100040010004000L, 0x0100040010004001L, 0x0100040010004080L, 0x0100040010004081L,
         0x0100040010200000L, 0x0100040010200001L, 0x0100040010200080L, 0x0100040010200081L,
         0x0100040010204000L, 0x0100040010204001L, 0x0100040010204080L, 0x0100040010204081L,
         0x0100040800000000L, 0x0100040800000001L, 0x0100040800000080L, 0x0100040800000081L,
         0x0100040800004000L, 0x0100040800004001L, 0x0100040800004080L, 0x0100040800004081L,
         0x0100040800200000L, 0x0100040800200001L, 0x0100040800200080L, 0x0100040800200081L,
         0x0100040800204000L, 0x0100040800204001L, 0x0100040800204080L, 0x0100040800204081L,
         0x0100040810000000L, 0x0100040810000001L, 0x0100040810000080L, 0x0100040810000081L,
         0x0100040810004000L, 0x0100040810004001L, 0x0100040810004080L, 0x0100040810004081L,
         0x0100040810200000L, 0x0100040810200001L, 0x0100040810200080L, 0x0100040810200081L,
         0x0100040810204000L, 0x0100040810204001L, 0x0100040810204080L, 0x0100040810204081L,
         0x0102000000000000L, 0x0102000000000001L, 0x0102000000000080L, 0x0102000000000081L,
         0x0102000000004000L, 0x0102000000004001L, 0x0102000000004080L, 0x0102000000004081L,
         0x0102000000200000L, 0x0102000000200001L, 0x0102000000200080L, 0x0102000000200081L,
         0x0102000000204000L, 0x0102000000204001L, 0x0102000000204080L, 0x0102000000204081L,
         0x0102000010000000L, 0x0102000010000001L, 0x0102000010000080L, 0x0102000010000081L,
         0x0102000010004000L, 0x0102000010004001L, 0x0102000010004080L, 0x0102000010004081L,
         0x0102000010200000L, 0x0102000010200001L, 0x0102000010200080L, 0x0102000010200081L,
         0x0102000010204000L, 0x0102000010204001L, 0x0102000010204080L, 0x0102000010204081L,
         0x0102000800000000L, 0x0102000800000001L, 0x0102000800000080L, 0x0102000800000081L,
         0x0102000800004000L, 0x0102000800004001L, 0x0102000800004080L, 0x0102000800004081L,
         0x0102000800200000L, 0x0102000800200001L, 0x0102000800200080L, 0x0102000800200081L,
         0x0102000800204000L, 0x0102000800204001L, 0x0102000800204080L, 0x0102000800204081L,
         0x0102000810000000L, 0x0102000810000001L, 0x0102000810000080L, 0x0102000810000081L,
         0x0102000810004000L, 0x0102000810004001L, 0x0102000810004080L, 0x0102000810004081L,
         0x0102000810200000L, 0x0102000810200001L, 0x0102000810200080L, 0x0102000810200081L,
         0x0102000810204000L, 0x0102000810204001L, 0x0102000810204080L, 0x0102000810204081L,
         0x0102040000000000L, 0x0102040000000001L, 0x0102040000000080L, 0x0102040000000081L,
         0x0102040000004000L, 0x0102040000004001L, 0x0102040000004080L, 0x0102040000004081L,
         0x0102040000200000L, 0x0102040000200001L, 0x0102040000200080L, 0x0102040000200081L,
         0x0102040000204000L, 0x0102040000204001L, 0x0102040000204080L, 0x0102040000204081L,
         0x0102040010000000L, 0x0102040010000001L, 0x0102040010000080L, 0x0102040010000081L,
         0x0102040010004000L, 0x0102040010004001L, 0x0102040010004080L, 0x0102040010004081L,
         0x0102040010200000L, 0x0102040010200001L, 0x0102040010200080L, 0x0102040010200081L,
         0x0102040010204000L, 0x0102040010204001L, 0x0102040010204080L, 0x0102040010204081L,
         0x0102040800000000L, 0x0102040800000001L, 0x0102040800000080L, 0x0102040800000081L,
         0x0102040800004000L, 0x0102040800004001L, 0x0102040800004080L, 0x0102040800004081L,
         0x0102040800200000L, 0x0102040800200001L, 0x0102040800200080L, 0x0102040800200081L,
         0x0102040800204000L, 0x0102040800204001L, 0x0102040800204080L, 0x0102040800204081L,
         0x0102040810000000L, 0x0102040810000001L, 0x0102040810000080L, 0x0102040810000081L,
         0x0102040810004000L, 0x0102040810004001L, 0x0102040810004080L, 0x0102040810004081L,
         0x0102040810200000L, 0x0102040810200001L, 0x0102040810200080L, 0x0102040810200081L,
         0x0102040810204000L, 0x0102040810204001L, 0x0102040810204080L, 0x0102040810204081L
     };
 
     // For toString(); must have length 64
     private static final String ZEROES = "0000000000000000000000000000000000000000000000000000000000000000";
 
     final static byte[] bitLengths =
     {
         0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
         5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
         6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
         6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
         7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
         7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
         7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
         7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
         8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
         8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
         8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
         8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
         8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
         8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
         8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
         8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
     };
 
     // TODO make m fixed for the LongArray, and hence compute T once and for all
 
     private long[] m_ints;
 
     public LongArray(int intLen)
     {
          = new long[intLen];
     }
 
     public LongArray(long[] ints)
     {
          = ints;
     }
 
     public LongArray(long[] intsint offint len)
     {
         if (off == 0 && len == ints.length)
         {
              = ints;
         }
         else
         {
              = new long[len];
             System.arraycopy(intsoff, 0, len);
         }
     }
 
     public LongArray(BigInteger bigInt)
     {
         if (bigInt == null || bigInt.signum() < 0)
         {
             throw new IllegalArgumentException("invalid F2m field value");
         }
 
         if (bigInt.signum() == 0)
         {
              = new long[] { 0L };
             return;
         }
 
         byte[] barr = bigInt.toByteArray();
         int barrLen = barr.length;
         int barrStart = 0;
         if (barr[0] == 0)
         {
             // First byte is 0 to enforce highest (=sign) bit is zero.
             // In this case ignore barr[0].
             barrLen--;
             barrStart = 1;
         }
         int intLen = (barrLen + 7) / 8;
          = new long[intLen];
 
         int iarrJ = intLen - 1;
         int rem = barrLen % 8 + barrStart;
         long temp = 0;
         int barrI = barrStart;
         if (barrStart < rem)
         {
             for (; barrI < rembarrI++)
             {
                 temp <<= 8;
                 int barrBarrI = barr[barrI] & 0xFF;
                 temp |= barrBarrI;
             }
             [iarrJ--] = temp;
         }
 
         for (; iarrJ >= 0; iarrJ--)
         {
             temp = 0;
             for (int i = 0; i < 8; i++)
             {
                 temp <<= 8;
                 int barrBarrI = barr[barrI++] & 0xFF;
                 temp |= barrBarrI;
             }
             [iarrJ] = temp;
         }
     }
 
     public boolean isOne()
     {
         long[] a = ;
         if (a[0] != 1L)
         {
             return false;
         }
         for (int i = 1; i < a.length; ++i)
         {
             if (a[i] != 0L)
             {
                 return false;
             }
         }
         return true;
     }
 
     public boolean isZero()
     {
         long[] a = ;
         for (int i = 0; i < a.length; ++i)
         {
             if (a[i] != 0L)
             {
                 return false;
             }
         }
         return true;
     }
 
     public int getUsedLength()
     {
         return getUsedLengthFrom(.);
     }
 
     public int getUsedLengthFrom(int from)
     {
         long[] a = ;
         from = Math.min(froma.length);
 
         if (from < 1)
         {
             return 0;
         }
 
         // Check if first element will act as sentinel
         if (a[0] != 0)
         {
             while (a[--from] == 0)
             {
             }
             return from + 1;
         }
 
         do
         {
             if (a[--from] != 0)
             {
                 return from + 1;
             }
         }
         while (from > 0);
 
         return 0;
     }
 
     public int degree()
     {
         int i = .;
         long w;
         do
         {
             if (i == 0)
             {
                 return 0;
             }
             w = [--i];
         }
         while (w == 0);
 
         return (i << 6) + bitLength(w);
     }
 
     private int degreeFrom(int limit)
     {
         int i = (limit + 62) >>> 6;
         long w;
         do
         {
             if (i == 0)
             {
                 return 0;
             }
             w = [--i];
         }
         while (w == 0);
 
         return (i << 6) + bitLength(w);
     }
 
 //    private int lowestCoefficient()
 //    {
 //        for (int i = 0; i < m_ints.length; ++i)
 //        {
 //            long mi = m_ints[i];
 //            if (mi != 0)
 //            {
 //                int j = 0;
 //                while ((mi & 0xFFL) == 0)
 //                {
 //                    j += 8;
 //                    mi >>>= 8;
 //                }
 //                while ((mi & 1L) == 0)
 //                {
 //                    ++j;
 //                    mi >>>= 1;
 //                }
 //                return (i << 6) + j;
 //            }
 //        }
 //        return -1;
 //    }
 
     private static int bitLength(long w)
     {
         int u = (int)(w >>> 32), b;
         if (u == 0)
         {
             u = (int)w;
             b = 0;
         }
         else
         {
             b = 32;
         }
 
         int t = u >>> 16, k;
         if (t == 0)
         {
             t = u >>> 8;
             k = (t == 0) ? [u] : 8 + [t];
         }
         else
         {
             int v = t >>> 8;
             k = (v == 0) ? 16 + [t] : 24 + [v];
         }
 
         return b + k;
     }
 
     private long[] resizedInts(int newLen)
     {
         long[] newInts = new long[newLen];
         System.arraycopy(, 0, newInts, 0, Math.min(.newLen));
         return newInts;
     }
 
     public BigInteger toBigInteger()
     {
         int usedLen = getUsedLength();
         if (usedLen == 0)
         {
             return .;
         }
 
         long highestInt = [usedLen - 1];
         byte[] temp = new byte[8];
         int barrI = 0;
         boolean trailingZeroBytesDone = false;
         for (int j = 7; j >= 0; j--)
         {
             byte thisByte = (byte)(highestInt >>> (8 * j));
             if (trailingZeroBytesDone || (thisByte != 0))
             {
                 trailingZeroBytesDone = true;
                 temp[barrI++] = thisByte;
             }
         }
 
         int barrLen = 8 * (usedLen - 1) + barrI;
         byte[] barr = new byte[barrLen];
         for (int j = 0; j < barrIj++)
         {
             barr[j] = temp[j];
         }
         // Highest value int is done now
 
         for (int iarrJ = usedLen - 2; iarrJ >= 0; iarrJ--)
         {
             long mi = [iarrJ];
             for (int j = 7; j >= 0; j--)
             {
                 barr[barrI++] = (byte)(mi >>> (8 * j));
             }
         }
         return new BigInteger(1, barr);
     }
 
 //    private static long shiftUp(long[] x, int xOff, int count)
 //    {
 //        long prev = 0;
 //        for (int i = 0; i < count; ++i)
 //        {
 //            long next = x[xOff + i];
 //            x[xOff + i] = (next << 1) | prev;
 //            prev = next >>> 63;
 //        }
 //        return prev;
 //    }
 
     private static long shiftUp(long[] xint xOffint countint shift)
     {
         int shiftInv = 64 - shift;
         long prev = 0;
         for (int i = 0; i < count; ++i)
         {
             long next = x[xOff + i];
             x[xOff + i] = (next << shift) | prev;
             prev = next >>> shiftInv;
         }
         return prev;
     }
 
     private static long shiftUp(long[] xint xOfflong[] zint zOffint countint shift)
     {
         int shiftInv = 64 - shift;
         long prev = 0;
         for (int i = 0; i < count; ++i)
         {
             long next = x[xOff + i];
             z[zOff + i] = (next << shift) | prev;
             prev = next >>> shiftInv;
         }
         return prev;
     }
 
     public LongArray addOne()
     {
         if (. == 0)
         {
             return new LongArray(new long[]{ 1L });
         }
 
         int resultLen = Math.max(1, getUsedLength());
         long[] ints = resizedInts(resultLen);
         ints[0] ^= 1L;
         return new LongArray(ints);
     }
 
 //    private void addShiftedByBits(LongArray other, int bits)
 //    {
 //        int words = bits >>> 6;
 //        int shift = bits & 0x3F;
 //
 //        if (shift == 0)
 //        {
 //            addShiftedByWords(other, words);
 //            return;
 //        }
 //
 //        int otherUsedLen = other.getUsedLength();
 //        if (otherUsedLen == 0)
 //        {
 //            return;
 //        }
 //
 //        int minLen = otherUsedLen + words + 1;
 //        if (minLen > m_ints.length)
 //        {
 //            m_ints = resizedInts(minLen);
 //        }
 //
 //        long carry = addShiftedByBits(m_ints, words, other.m_ints, 0, otherUsedLen, shift);
 //        m_ints[otherUsedLen + words] ^= carry;
 //    }
 
     private void addShiftedByBitsSafe(LongArray otherint otherDegreeint bits)
     {
         int otherLen = (otherDegree + 63) >>> 6;
 
         int words = bits >>> 6;
         int shift = bits & 0x3F;
 
         if (shift == 0)
         {
             add(wordsother.m_ints, 0, otherLen);
             return;
         }
 
         long carry = addShiftedUp(wordsother.m_ints, 0, otherLenshift);
         if (carry != 0L)
         {
             [otherLen + words] ^= carry;
         }
     }
 
     private static long addShiftedUp(long[] xint xOfflong[] yint yOffint countint shift)
     {
         int shiftInv = 64 - shift;
         long prev = 0;
         for (int i = 0; i < count; ++i)
         {
             long next = y[yOff + i];
             x[xOff + i] ^= (next << shift) | prev;
             prev = next >>> shiftInv;
         }
         return prev;
     }
 
     private static long addShiftedDown(long[] xint xOfflong[] yint yOffint countint shift)
     {
         int shiftInv = 64 - shift;
         long prev = 0;
         int i = count;
         while (--i >= 0)
         {
             long next = y[yOff + i];
             x[xOff + i] ^= (next >>> shift) | prev;
             prev = next << shiftInv;
         }
         return prev;
     }
 
     public void addShiftedByWords(LongArray otherint words)
     {
         int otherUsedLen = other.getUsedLength();
         if (otherUsedLen == 0)
         {
             return;
         }
 
         int minLen = otherUsedLen + words;
         if (minLen > .)
         {
              = resizedInts(minLen);
         }
 
         add(wordsother.m_ints, 0, otherUsedLen);
     }
 
     private static void add(long[] xint xOfflong[] yint yOffint count)
     {
         for (int i = 0; i < count; ++i)
         {
             x[xOff + i] ^= y[yOff + i];
         }
     }
 
     private static void add(long[] xint xOfflong[] yint yOfflong[] zint zOffint count)
     {
         for (int i = 0; i < count; ++i)
         {
             z[zOff + i] = x[xOff + i] ^ y[yOff + i];
         }
     }
 
     private static void addBoth(long[] xint xOfflong[] y1int y1Offlong[] y2int y2Offint count)
     {
         for (int i = 0; i < count; ++i)
         {
             x[xOff + i] ^= y1[y1Off + i] ^ y2[y2Off + i];
         }
     }
 
     private static void distribute(long[] xint srcint dst1int dst2int count)
     {
         for (int i = 0; i < count; ++i)
         {
             long v = x[src + i];
             x[dst1 + i] ^= v;
             x[dst2 + i] ^= v;
         }
     }
 
     public int getLength()
     {
         return .;
     }
 
     private static void flipWord(long[] bufint offint bitlong word)
     {
         int n = off + (bit >>> 6);
         int shift = bit & 0x3F;
         if (shift == 0)
         {
             buf[n] ^= word;
         }
         else
         {
             buf[n] ^= word << shift;
             word >>>= (64 - shift);
             if (word != 0)
             {
                 buf[++n] ^= word;
             }
         }
     }
 
 //    private static long getWord(long[] buf, int off, int len, int bit)
 //    {
 //        int n = off + (bit >>> 6);
 //        int shift = bit & 0x3F;
 //        if (shift == 0)
 //        {
 //            return buf[n];
 //        }
 //        long result = buf[n] >>> shift;
 //        if (++n < len)
 //        {
 //            result |= buf[n] << (64 - shift);
 //        }
 //        return result;
 //    }
 
     public boolean testBitZero()
     {
         return . > 0 && ([0] & 1L) != 0;
     }
 
     private static boolean testBit(long[] bufint offint n)
     {
         // theInt = n / 64
         int theInt = n >>> 6;
         // theBit = n % 64
         int theBit = n & 0x3F;
         long tester = 1L << theBit;
         return (buf[off + theInt] & tester) != 0;
     }
 
     private static void flipBit(long[] bufint offint n)
     {
         // theInt = n / 64
         int theInt = n >>> 6;
         // theBit = n % 64
         int theBit = n & 0x3F;
         long flipper = 1L << theBit;
         buf[off + theInt] ^= flipper;
     }
 
 //    private static void setBit(long[] buf, int off, int n)
 //    {
 //        // theInt = n / 64
 //        int theInt = n >>> 6;
 //        // theBit = n % 64
 //        int theBit = n & 0x3F;
 //        long setter = 1L << theBit;
 //        buf[off + theInt] |= setter;
 //    }
 //
 //    private static void clearBit(long[] buf, int off, int n)
 //    {
 //        // theInt = n / 64
 //        int theInt = n >>> 6;
 //        // theBit = n % 64
 //        int theBit = n & 0x3F;
 //        long setter = 1L << theBit;
 //        buf[off + theInt] &= ~setter;
 //    }
 
     private static void multiplyWord(long along[] bint bLenlong[] cint cOff)
     {
         if ((a & 1L) != 0L)
         {
             add(ccOffb, 0, bLen);
         }
         int k = 1;
         while ((a >>>= 1) != 0L)
         {
             if ((a & 1L) != 0L)
             {
                 long carry = addShiftedUp(ccOffb, 0, bLenk);
                 if (carry != 0L)
                 {
                     c[cOff + bLen] ^= carry;
                 }
             }
             ++k;
         }
     }
 
     public LongArray modMultiplyLD(LongArray otherint mint[] ks)
     {
         /*
          * Find out the degree of each argument and handle the zero cases
          */
         int aDeg = degree();
         if (aDeg == 0)
         {
             return this;
         }
         int bDeg = other.degree();
         if (bDeg == 0)
         {
             return other;
         }
 
         /*
          * Swap if necessary so that A is the smaller argument
          */
         LongArray A = thisB = other;
         if (aDeg > bDeg)
         {
             A = otherB = this;
             int tmp = aDegaDeg = bDegbDeg = tmp;
         }
 
         /*
          * Establish the word lengths of the arguments and result
          */
         int aLen = (aDeg + 63) >>> 6;
         int bLen = (bDeg + 63) >>> 6;
         int cLen = (aDeg + bDeg + 62) >>> 6;
 
         if (aLen == 1)
         {
             long a0 = A.m_ints[0];
             if (a0 == 1L)
             {
                 return B;
             }
 
             /*
              * Fast path for small A, with performance dependent only on the number of set bits
              */
             long[] c0 = new long[cLen];
             multiplyWord(a0B.m_intsbLenc0, 0);
 
             /*
              * Reduce the raw answer against the reduction coefficients
              */
             return reduceResult(c0, 0, cLenmks);
         }
 
         /*
          * Determine if B will get bigger during shifting
          */
         int bMax = (bDeg + 7 + 63) >>> 6;
 
         /*
          * Lookup table for the offset of each B in the tables
          */
         int[] ti = new int[16];
 
         /*
          * Precompute table of all 4-bit products of B
          */
         long[] T0 = new long[bMax << 4];
         int tOff = bMax;
         ti[1] = tOff;
         System.arraycopy(B.m_ints, 0, T0tOffbLen);
         for (int i = 2; i < 16; ++i)
         {
             ti[i] = (tOff += bMax);
             if ((i & 1) == 0)
             {
                 shiftUp(T0tOff >>> 1, T0tOffbMax, 1);
             }
             else
             {
                 add(T0bMaxT0tOff - bMaxT0tOffbMax);
             }
         }
 
         /*
          * Second table with all 4-bit products of B shifted 4 bits
          */
         long[] T1 = new long[T0.length];
         shiftUp(T0, 0, T1, 0, T0.length, 4);
 //        shiftUp(T0, bMax, T1, bMax, tOff, 4);
 
         long[] a = A.m_ints;
         long[] c = new long[cLen];
 
         int MASK = 0xF;
 
         /*
          * Lopez-Dahab algorithm
          */
 
         for (int k = 56; k >= 0; k -= 8)
         {
             for (int j = 1; j < aLenj += 2)
             {
                 int aVal = (int)(a[j] >>> k);
                 int u = aVal & MASK;
                 int v = (aVal >>> 4) & MASK;
                 addBoth(cj - 1, T0ti[u], T1ti[v], bMax);
             }
             shiftUp(c, 0, cLen, 8);
         }
 
         for (int k = 56; k >= 0; k -= 8)
         {
             for (int j = 0; j < aLenj += 2)
             {
                 int aVal = (int)(a[j] >>> k);
                 int u = aVal & MASK;
                 int v = (aVal >>> 4) & MASK;
                 addBoth(cjT0ti[u], T1ti[v], bMax);
             }
             if (k > 0)
             {
                 shiftUp(c, 0, cLen, 8);
             }
         }
 
         /*
          * Finally the raw answer is collected, reduce it against the reduction coefficients
          */
         return reduceResult(c, 0, cLenmks);
     }
 
     public LongArray modMultiply(LongArray otherint mint[] ks)
     {
         /*
          * Find out the degree of each argument and handle the zero cases
          */
         int aDeg = degree();
         if (aDeg == 0)
         {
             return this;
         }
         int bDeg = other.degree();
         if (bDeg == 0)
        {
            return other;
        }
        /*
         * Swap if necessary so that A is the smaller argument
         */
        LongArray A = thisB = other;
        if (aDeg > bDeg)
        {
            A = otherB = this;
            int tmp = aDegaDeg = bDegbDeg = tmp;
        }
        /*
         * Establish the word lengths of the arguments and result
         */
        int aLen = (aDeg + 63) >>> 6;
        int bLen = (bDeg + 63) >>> 6;
        int cLen = (aDeg + bDeg + 62) >>> 6;
        if (aLen == 1)
        {
            long a0 = A.m_ints[0];
            if (a0 == 1L)
            {
                return B;
            }
            /*
             * Fast path for small A, with performance dependent only on the number of set bits
             */
            long[] c0 = new long[cLen];
            multiplyWord(a0B.m_intsbLenc0, 0);
            /*
             * Reduce the raw answer against the reduction coefficients
             */
            return reduceResult(c0, 0, cLenmks);
        }
        /*
         * Determine if B will get bigger during shifting
         */
        int bMax = (bDeg + 7 + 63) >>> 6;
        /*
         * Lookup table for the offset of each B in the tables
         */
        int[] ti = new int[16];
        /*
         * Precompute table of all 4-bit products of B
         */
        long[] T0 = new long[bMax << 4];
        int tOff = bMax;
        ti[1] = tOff;
        System.arraycopy(B.m_ints, 0, T0tOffbLen);
        for (int i = 2; i < 16; ++i)
        {
            ti[i] = (tOff += bMax);
            if ((i & 1) == 0)
            {
                shiftUp(T0tOff >>> 1, T0tOffbMax, 1);
            }
            else
            {
                add(T0bMaxT0tOff - bMaxT0tOffbMax);
            }
        }
        /*
         * Second table with all 4-bit products of B shifted 4 bits
         */
        long[] T1 = new long[T0.length];
        shiftUp(T0, 0, T1, 0, T0.length, 4);
//        shiftUp(T0, bMax, T1, bMax, tOff, 4);
        long[] a = A.m_ints;
        long[] c = new long[cLen << 3];
        int MASK = 0xF;
        /*
         * Lopez-Dahab (Modified) algorithm
         */
        for (int aPos = 0; aPos < aLen; ++aPos)
        {
            long aVal = a[aPos];
            int cOff = aPos;
            for (;;)
            {
                int u = (int)aVal & MASK;
                aVal >>>= 4;
                int v = (int)aVal & MASK;
                addBoth(ccOffT0ti[u], T1ti[v], bMax);
                aVal >>>= 4;
                if (aVal == 0L)
                {
                    break;
                }
                cOff += cLen;
            }
        }
        {
            int cOff = c.length;
            while ((cOff -= cLen) != 0)
            {
                addShiftedUp(ccOff - cLenccOffcLen, 8);
            }
        }
        /*
         * Finally the raw answer is collected, reduce it against the reduction coefficients
         */
        return reduceResult(c, 0, cLenmks);
    }
    public LongArray modMultiplyAlt(LongArray otherint mint[] ks)
    {
        /*
         * Find out the degree of each argument and handle the zero cases
         */
        int aDeg = degree();
        if (aDeg == 0)
        {
            return this;
        }
        int bDeg = other.degree();
        if (bDeg == 0)
        {
            return other;
        }
        /*
         * Swap if necessary so that A is the smaller argument
         */
        LongArray A = thisB = other;
        if (aDeg > bDeg)
        {
            A = otherB = this;
            int tmp = aDegaDeg = bDegbDeg = tmp;
        }
        /*
         * Establish the word lengths of the arguments and result
         */
        int aLen = (aDeg + 63) >>> 6;
        int bLen = (bDeg + 63) >>> 6;
        int cLen = (aDeg + bDeg + 62) >>> 6;
        if (aLen == 1)
        {
            long a0 = A.m_ints[0];
            if (a0 == 1L)
            {
                return B;
            }
            /*
             * Fast path for small A, with performance dependent only on the number of set bits
             */
            long[] c0 = new long[cLen];
            multiplyWord(a0B.m_intsbLenc0, 0);
            /*
             * Reduce the raw answer against the reduction coefficients
             */
            return reduceResult(c0, 0, cLenmks);
        }
        // NOTE: This works, but is slower than width 4 processing
//        if (aLen == 2)
//        {
//            /*
//             * Use common-multiplicand optimization to save ~1/4 of the adds
//             */
//            long a1 = A.m_ints[0], a2 = A.m_ints[1];
//            long aa = a1 & a2; a1 ^= aa; a2 ^= aa;
//            long[] b = B.m_ints;
//            long[] c = new long[cLen];
//            multiplyWord(aa, b, bLen, c, 1);
//            add(c, 0, c, 1, cLen - 1);
//            multiplyWord(a1, b, bLen, c, 0);
//            multiplyWord(a2, b, bLen, c, 1);
//            /*
//             * Reduce the raw answer against the reduction coefficients
//             */
//            return reduceResult(c, 0, cLen, m, ks);
//        }
        /*
         * Determine the parameters of the interleaved window algorithm: the 'width' in bits to
         * process together, the number of evaluation 'positions' implied by that width, and the
         * 'top' position at which the regular window algorithm stops.
         */
        int widthpositionstopbanks;
        // NOTE: width 4 is the fastest over the entire range of sizes used in current crypto 
//        width = 1; positions = 64; top = 64; banks = 4;
//        width = 2; positions = 32; top = 64; banks = 4;
//        width = 3; positions = 21; top = 63; banks = 3;
        width = 4; positions = 16; top = 64; banks = 8;
//        width = 5; positions = 13; top = 65; banks = 7;
//        width = 7; positions = 9; top = 63; banks = 9;
//        width = 8; positions = 8; top = 64; banks = 8;
        /*
         * Determine if B will get bigger during shifting
         */
        int shifts = top < 64 ? positions : positions - 1;
        int bMax = (bDeg + shifts + 63) >>> 6;
        int bTotal = bMax * banksstride = width * banks;
        /*
         * Create a single temporary buffer, with an offset table to find the positions of things in it 
         */
        int[] ci = new int[1 << width];
        int cTotal = aLen;
        {
            ci[0] = cTotal;
            cTotal += bTotal;
            ci[1] = cTotal;
            for (int i = 2; i < ci.length; ++i)
            {
                cTotal += cLen;
                ci[i] = cTotal;
            }
            cTotal += cLen;
        }
        // NOTE: Provide a safe dump for "high zeroes" since we are adding 'bMax' and not 'bLen'
        ++cTotal;
        long[] c = new long[cTotal];
        // Prepare A in interleaved form, according to the chosen width
        interleave(A.m_ints, 0, c, 0, aLenwidth);
        // Make a working copy of B, since we will be shifting it