Start line:  
End line:  

Snippet Preview

Snippet HTML Code

Stack Overflow Questions
Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
 
 
 /*
 Copyright 1999 CERN - European Organization for Nuclear Research.
 Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
 is hereby granted without fee, provided that the above copyright notice appear in all copies and
 that both that copyright notice and this permission notice appear in supporting documentation.
 CERN makes no representations about the suitability of this software for any purpose.
 It is provided "as is" without expressed or implied warranty.
 */
 
 package org.apache.mahout.math.jet.random.engine;
 
 import java.util.Date;
MersenneTwister (MT19937) is one of the strongest uniform pseudo-random number generators known so far; at the same time it is quick. Produces uniformly distributed int's and long's in the closed intervals [Integer.MIN_VALUE,Integer.MAX_VALUE] and [Long.MIN_VALUE,Long.MAX_VALUE], respectively, as well as float's and double's in the open unit intervals (0.0f,1.0f) and (0.0,1.0), respectively. The seed can be any 32-bit integer except 0. Shawn J. Cokus commented that perhaps the seed should preferably be odd.

Quality: MersenneTwister is designed to pass the k-distribution test. It has an astronomically large period of 219937-1 (=106001) and 623-dimensional equidistribution up to 32-bit accuracy. It passes many stringent statistical tests, including the diehard test of G. Marsaglia and the load test of P. Hellekalek and S. Wegenkittl.

Performance: Its speed is comparable to other modern generators (in particular, as fast as java.util.Random.nextFloat()). 2.5 million calls to raw() per second (Pentium Pro 200 Mhz, JDK 1.2, NT). Be aware, however, that there is a non-negligible amount of overhead required to initialize the data structures used by a MersenneTwister. Code like

double sum = 0.0;
for (int i=0; i<100000; ++i) {
RandomElement twister = new MersenneTwister(new Date());
sum += twister.raw();
}
will be wildly inefficient. Consider using
double sum = 0.0;
RandomElement twister = new MersenneTwister(new Date());
for (int i=0; i<100000; ++i) {
sum += twister.raw();
}
instead. This allows the cost of constructing the MersenneTwister object to be borne only once, rather than once for each iteration in the loop.

Implementation: After M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3--30.

More info on Masumoto's homepage.
More info on Pseudo-random number generators is on the Web.
Yet some more info.

The correctness of this implementation has been verified against the published output sequence mt19937-2.out of the C-implementation mt19937-2.c. (Call test(1000) to print the sequence).

Note that this implementation is not synchronized.

Details: MersenneTwister is designed with consideration of the flaws of various existing generators in mind. It is an improved version of TT800, a very successful generator. MersenneTwister is based on linear recurrences modulo 2. Such generators are very fast, have extremely long periods, and appear quite robust. MersenneTwister produces 32-bit numbers, and every k-dimensional vector of such numbers appears the same number of times as k successive values over the period length, for each k <= 623 (except for the zero vector, which appears one time less). If one looks at only the first n <= 16 bits of each number, then the property holds for even larger k, as shown in the following table (taken from the publication cited above):

n
1
2
3
4
5
6
7
8
9
10
11
12 .. 16
17 .. 32
k
19937
9968
6240
4984
3738
3115
2493
2492
1869
1869
1248
1246
623

MersenneTwister generates random numbers in batches of 624 numbers at a time, so the caching and pipelining of modern systems is exploited. The generator is implemented to generate the output by using the fastest arithmetic operations only: 32-bit additions and bit operations (no division, no multiplication, no mod). These operations generate sequences of 32 random bits (int's). long's are formed by concatenating two 32 bit int's. float's are formed by dividing the interval [0.0,1.0] into 232 sub intervals, then randomly choosing one subinterval. double's are formed by dividing the interval [0.0,1.0] into 264 sub intervals, then randomly choosing one subinterval.

Author(s):
wolfgang.hoschek@cern.ch
Version:
1.0, 09/24/99
See also:
java.util.Random

public final class MersenneTwister extends RandomEngine {
  /* Period parameters */
  private static final int N = 624;
  private static final int M = 397;
  private static final int MATRIX_A = 0x9908b0df;   /* constant vector a */
  private static final int UPPER_MASK = 0x80000000; /* most significant w-r bits */
  private static final int LOWER_MASK = 0x7fffffff; /* least significant r bits */
  /* for tempering */
  private static final int TEMPERING_MASK_B = 0x9d2c5680;
  private static final int TEMPERING_MASK_C = 0xefc60000;
  private static final int MAG0 = 0x0;
  private static final int MAG1 = ;
  //private static final int[] mag01=new int[] {0x0, MATRIX_A};
  /* mag01[x] = x * MATRIX_A  for x=0,1 */
  private static final int DEFAULT_SEED = 4357;
  private int mti;
  private final int[] mt = new int[]; /* set initial seeds: N = 624 words */

  
Constructs and returns a random number generator with a default seed, which is a constant. Thus using this constructor will yield generators that always produce exactly the same sequence. This method is mainly intended to ease testing and debugging.
  public MersenneTwister() {
    this();
  }

  
Constructs and returns a random number generator with the given seed.

Parameters:
seed A number that is used to initialize the internal state of the generator.
  public MersenneTwister(int seed) {
    setSeed(seed);
  }

  
Constructs and returns a random number generator seeded with the given date.

Parameters:
d typically new Date()
  public MersenneTwister(Date d) {
    this((intd.getTime());
  }

  
Generates N words at one time
  void nextBlock() {
    int y;
    int kk;
    for (kk = 0; kk <  - kk++) {
      y = ([kk] & ) | ([kk + 1] & );
      [kk] = [kk + ] ^ (y >>> 1) ^ ((y & 0x1) == 0 ?  : );
    }
    for (; kk <  - 1; kk++) {
      y = ([kk] & ) | ([kk + 1] & );
      [kk] = [kk + ( - )] ^ (y >>> 1) ^ ((y & 0x1) == 0 ?  : );
    }
    y = ([ - 1] & ) | ([0] & );
    [ - 1] = [ - 1] ^ (y >>> 1) ^ ((y & 0x1) == 0 ?  : );
    this. = 0;
  }

  
Returns a 32 bit uniformly distributed random number in the closed interval [Integer.MIN_VALUE,Integer.MAX_VALUE] (including Integer.MIN_VALUE and Integer.MAX_VALUE).
  public int nextInt() {
    /* Each single bit including the sign bit will be random */
    if ( == ) {
      nextBlock();
    } // generate N ints at one time
    int y = [++];
    y ^= y >>> 11; // y ^= TEMPERING_SHIFT_U(y );
    y ^= (y << 7) & // y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
    y ^= (y << 15) & // y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
    // y &= 0xffffffff; //you may delete this line if word size = 32
    y ^= y >>> 18; // y ^= TEMPERING_SHIFT_L(y);
    return y;
  }

  
Sets the receiver's seed. This method resets the receiver's entire internal state.

Parameters:
seed An integer that is used to reset the internal state of the generator
  void setSeed(int seed) {
    [0] = seed;
    for (int i = 1; i < i++) {
      [i] = 1812433253 * ([i - 1] ^ ([i - 1] >> 30)) + i;
      /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
      /* In the previous versions, MSBs of the seed affect   */
      /* only MSBs of the array mt[].                        */
      /* 2002/01/09 modified by Makoto Matsumoto             */
      //mt[i] &= 0xffffffff;
      /* for >32 bit machines */
    }
    //log.info("init done");
     = ;
  }

  
Sets the receiver's seed in a fashion compatible with the reference C implementation. See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/980409/mt19937int.c This method isn't as good as the default method due to poor distribution of the resulting states.

Parameters:
seed An integer that is used to reset the internal state in the same way as done in the 1999 reference implementation. Should only be used for testing, not actual coding.
  void setReferenceSeed(int seed) {
    for (int i = 0; i < i++) {
      [i] = seed & 0xffff0000;
      seed = 69069 * seed + 1;
      [i] |= (seed & 0xffff0000) >>> 16;
      seed = 69069 * seed + 1;
    }
    //log.info("init done");
     = ;
  }
New to GrepCode? Check out our FAQ X