Start line:  
End line:  

Snippet Preview

Snippet HTML Code

Stack Overflow Questions
  // Revision 1.29
  
  /*
   * Written by Doug Lea with assistance from members of JCP JSR-166
   * Expert Group and released to the public domain, as explained at
   * http://creativecommons.org/publicdomain/zero/1.0/
   */
  
  package org.infinispan.commons.util.concurrent.jdk8backported;

A ForkJoinTask with a completion action performed when triggered and there are no remaining pending actions. CountedCompleters are in general more robust in the presence of subtask stalls and blockage than are other forms of ForkJoinTasks, but are less intuitive to program. Uses of CountedCompleter are similar to those of other completion based components (such as java.nio.channels.CompletionHandler) except that multiple pending completions may be necessary to trigger the onCompletion(org.infinispan.commons.util.concurrent.jdk8backported.CountedCompleter) action, not just one. Unless initialized otherwise, the pending count starts at zero, but may be (atomically) changed using methods setPendingCount(int), addToPendingCount(int), and compareAndSetPendingCount(int,int). Upon invocation of tryComplete(), if the pending action count is nonzero, it is decremented; otherwise, the completion action is performed, and if this completer itself has a completer, the process is continued with its completer. As is the case with related synchronization components such as Phaser and Semaphore, these methods affect only internal counts; they do not establish any further internal bookkeeping. In particular, the identities of pending tasks are not maintained. As illustrated below, you can create subclasses that do record some or all pending tasks or their results when needed. As illustrated below, utility methods supporting customization of completion traversals are also provided. However, because CountedCompleters provide only basic synchronization mechanisms, it may be useful to create further abstract subclasses that maintain linkages, fields, and additional support methods appropriate for a set of related usages.

A concrete CountedCompleter class must define method compute(), that should in most cases (as illustrated below), invoke tryComplete() once before returning. The class may also optionally override method onCompletion(org.infinispan.commons.util.concurrent.jdk8backported.CountedCompleter) to perform an action upon normal completion, and method onExceptionalCompletion(java.lang.Throwable,org.infinispan.commons.util.concurrent.jdk8backported.CountedCompleter) to perform an action upon any exception.

CountedCompleters most often do not bear results, in which case they are normally declared as CountedCompleter<Void>, and will always return null as a result value. In other cases, you should override method getRawResult() to provide a result from join(), invoke(), and related methods. In general, this method should return the value of a field (or a function of one or more fields) of the CountedCompleter object that holds the result upon completion. Method setRawResult(java.lang.Object) by default plays no role in CountedCompleters. It is possible, but rarely applicable, to override this method to maintain other objects or fields holding result data.

A CountedCompleter that does not itself have a completer (i.e., one for which getCompleter() returns null) can be used as a regular ForkJoinTask with this added functionality. However, any completer that in turn has another completer serves only as an internal helper for other computations, so its own task status (as reported in methods such as ForkJoinTask.isDone()) is arbitrary; this status changes only upon explicit invocations of complete(java.lang.Object), ForkJoinTask.cancel(boolean), ForkJoinTask.completeExceptionally(java.lang.Throwable) or upon exceptional completion of method compute. Upon any exceptional completion, the exception may be relayed to a task's completer (and its completer, and so on), if one exists and it has not otherwise already completed. Similarly, cancelling an internal CountedCompleter has only a local effect on that completer, so is not often useful.

Sample Usages.

Parallel recursive decomposition. CountedCompleters may be arranged in trees similar to those often used with RecursiveActions, although the constructions involved in setting them up typically vary. Here, the completer of each task is its parent in the computation tree. Even though they entail a bit more bookkeeping, CountedCompleters may be better choices when applying a possibly time-consuming operation (that cannot be further subdivided) to each element of an array or collection; especially when the operation takes a significantly different amount of time to complete for some elements than others, either because of intrinsic variation (for example I/O) or auxiliary effects such as garbage collection. Because CountedCompleters provide their own continuations, other threads need not block waiting to perform them.

For example, here is an initial version of a class that uses divide-by-two recursive decomposition to divide work into single pieces (leaf tasks). Even when work is split into individual calls, tree-based techniques are usually preferable to directly forking leaf tasks, because they reduce inter-thread communication and improve load balancing. In the recursive case, the second of each pair of subtasks to finish triggers completion of its parent (because no result combination is performed, the default no-op implementation of method onCompletion is not overridden). A static utility method sets up the base task and invokes it (here, implicitly using the ForkJoinPool.commonPool()).

 class MyOperation<E> { void apply(E e) { ...   }

 class ForEach<E> extends CountedCompleter<Void> {

   public static <E> void forEach(E[] array, MyOperation<E> op) {
     new ForEach<E>(null, array, op, 0, array.length).invoke();
   }

   final E[] array; final MyOperation<E> op; final int lo, hi;
   ForEach(CountedCompleter<?> p, E[] array, MyOperation<E> op, int lo, int hi) {
     super(p);
     this.array = array; this.op = op; this.lo = lo; this.hi = hi;
   }

   public void compute() { // version 1
     if (hi - lo >= 2) {
       int mid = (lo + hi) >>> 1;
       setPendingCount(2); // must set pending count before fork
       new ForEach(this, array, op, mid, hi).fork(); // right child
       new ForEach(this, array, op, lo, mid).fork(); // left child
     }
     else if (hi > lo)
       op.apply(array[lo]);
     tryComplete();
   }
 }}
This design can be improved by noticing that in the recursive case, the task has nothing to do after forking its right task, so can directly invoke its left task before returning. (This is an analog of tail recursion removal.) Also, because the task returns upon executing its left task (rather than falling through to invoke tryComplete) the pending count is set to one:
 class ForEach<E> ...
   public void compute() { // version 2
     if (hi - lo >= 2) {
       int mid = (lo + hi) >>> 1;
       setPendingCount(1); // only one pending
       new ForEach(this, array, op, mid, hi).fork(); // right child
       new ForEach(this, array, op, lo, mid).compute(); // direct invoke
     
     else {
       if (hi > lo)
         op.apply(array[lo]);
       tryComplete();
     }
   }
 }
As a further improvement, notice that the left task need not even exist. Instead of creating a new one, we can iterate using the original task, and add a pending count for each fork. Additionally, because no task in this tree implements an onCompletion(org.infinispan.commons.util.concurrent.jdk8backported.CountedCompleter) method, tryComplete() can be replaced with propagateCompletion().
 class ForEach<E> ...
   public void compute() { // version 3
     int l = lo,  h = hi;
     while (h - l >= 2) {
       int mid = (l + h) >>> 1;
       addToPendingCount(1);
       new ForEach(this, array, op, mid, h).fork(); // right child
       h = mid;
     
     if (h > l)
       op.apply(array[l]);
     propagateCompletion();
   }
 }
Additional improvements of such classes might entail precomputing pending counts so that they can be established in constructors, specializing classes for leaf steps, subdividing by say, four, instead of two per iteration, and using an adaptive threshold instead of always subdividing down to single elements.

Searching. A tree of CountedCompleters can search for a value or property in different parts of a data structure, and report a result in an java.util.concurrent.atomic.AtomicReference as soon as one is found. The others can poll the result to avoid unnecessary work. (You could additionally cancel other tasks, but it is usually simpler and more efficient to just let them notice that the result is set and if so skip further processing.) Illustrating again with an array using full partitioning (again, in practice, leaf tasks will almost always process more than one element):

 class Searcher<E> extends CountedCompleter<E> {
   final E[] array; final AtomicReference<E> result; final int lo, hi;
   Searcher(CountedCompleter<?> p, E[] array, AtomicReference<E> result, int lo, int hi) {
     super(p);
     this.array = array; this.result = result; this.lo = lo; this.hi = hi;
   
   public E getRawResult() { return result.get(); }
   public void compute() { // similar to ForEach version 3
     int l = lo,  h = hi;
     while (result.get() == null && h >= l) {
       if (h - l >= 2) {
         int mid = (l + h) >>> 1;
         addToPendingCount(1);
         new Searcher(this, array, result, mid, h).fork();
         h = mid;
       }
       else {
         E x = array[l];
         if (matches(x) && result.compareAndSet(null, x))
           quietlyCompleteRoot(); // root task is now joinable
         break;
       }
     }
     tryComplete(); // normally complete whether or not found
   }
   boolean matches(E e) { ... } // return true if found

   public static <E> E search(E[] array) {
       return new Searcher<E>(null, array, new AtomicReference<E>(), 0, array.length).invoke();
   }
 }}
In this example, as well as others in which tasks have no other effects except to compareAndSet a common result, the trailing unconditional invocation of tryComplete could be made conditional (if (result.get() == null) tryComplete();) because no further bookkeeping is required to manage completions once the root task completes.

Recording subtasks. CountedCompleter tasks that combine results of multiple subtasks usually need to access these results in method onCompletion(org.infinispan.commons.util.concurrent.jdk8backported.CountedCompleter). As illustrated in the following class (that performs a simplified form of map-reduce where mappings and reductions are all of type E), one way to do this in divide and conquer designs is to have each subtask record its sibling, so that it can be accessed in method onCompletion. This technique applies to reductions in which the order of combining left and right results does not matter; ordered reductions require explicit left/right designations. Variants of other streamlinings seen in the above examples may also apply.

 class MyMapper<E> { E apply(E v) {  ...   }
 class MyReducer<E> { E apply(E x, E y) {  ...  } }
 class MapReducer<E> extends CountedCompleter<E> {
   final E[] array; final MyMapper<E> mapper;
   final MyReducer<E> reducer; final int lo, hi;
   MapReducer<E> sibling;
   E result;
   MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
              MyReducer<E> reducer, int lo, int hi) {
     super(p);
     this.array = array; this.mapper = mapper;
     this.reducer = reducer; this.lo = lo; this.hi = hi;
   }
   public void compute() {
     if (hi - lo >= 2) {
       int mid = (lo + hi) >>> 1;
       MapReducer<E> left = new MapReducer(this, array, mapper, reducer, lo, mid);
       MapReducer<E> right = new MapReducer(this, array, mapper, reducer, mid, hi);
       left.sibling = right;
       right.sibling = left;
       setPendingCount(1); // only right is pending
       right.fork();
       left.compute();     // directly execute left
     }
     else {
       if (hi > lo)
           result = mapper.apply(array[lo]);
       tryComplete();
     }
   }
   public void onCompletion(CountedCompleter<?> caller) {
     if (caller != this) {
       MapReducer<E> child = (MapReducer<E>)caller;
       MapReducer<E> sib = child.sibling;
       if (sib == null || sib.result == null)
         result = child.result;
       else
         result = reducer.apply(child.result, sib.result);
     }
   }
   public E getRawResult() { return result; }

   public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
     return new MapReducer<E>(null, array, mapper, reducer,
                              0, array.length).invoke();
   }
 }}
Here, method onCompletion takes a form common to many completion designs that combine results. This callback-style method is triggered once per task, in either of the two different contexts in which the pending count is, or becomes, zero: (1) by a task itself, if its pending count is zero upon invocation of tryComplete, or (2) by any of its subtasks when they complete and decrement the pending count to zero. The caller argument distinguishes cases. Most often, when the caller is this, no action is necessary. Otherwise the caller argument can be used (usually via a cast) to supply a value (and/or links to other values) to be combined. Assuming proper use of pending counts, the actions inside onCompletion occur (once) upon completion of a task and its subtasks. No additional synchronization is required within this method to ensure thread safety of accesses to fields of this task or other completed tasks.

Completion Traversals. If using onCompletion to process completions is inapplicable or inconvenient, you can use methods firstComplete() and nextComplete() to create custom traversals. For example, to define a MapReducer that only splits out right-hand tasks in the form of the third ForEach example, the completions must cooperatively reduce along unexhausted subtask links, which can be done as follows:

 class MapReducer<E> extends CountedCompleter<E> { // version 2
   final E[] array; final MyMapper<E> mapper;
   final MyReducer<E> reducer; final int lo, hi;
   MapReducer<E> forks, next; // record subtask forks in list
   E result;
   MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
              MyReducer<E> reducer, int lo, int hi, MapReducer<E> next) {
     super(p);
     this.array = array; this.mapper = mapper;
     this.reducer = reducer; this.lo = lo; this.hi = hi;
     this.next = next;
   
   public void compute() {
     int l = lo,  h = hi;
     while (h - l >= 2) {
       int mid = (l + h) >>> 1;
       addToPendingCount(1);
       (forks = new MapReducer(this, array, mapper, reducer, mid, h, forks)).fork;
       h = mid;
     }
     if (h > l)
       result = mapper.apply(array[l]);
     // process completions by reducing along and advancing subtask links
     for (CountedCompleter<?> c = firstComplete(); c != null; c = c.nextComplete()) {
       for (MapReducer t = (MapReducer)c, s = t.forks;  s != null; s = t.forks = s.next)
         t.result = reducer.apply(t.result, s.result);
     }
   }
   public E getRawResult() { return result; }

   public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
     return new MapReducer<E>(null, array, mapper, reducer,
                              0, array.length, null).invoke();
   }
 }}

Triggers. Some CountedCompleters are themselves never forked, but instead serve as bits of plumbing in other designs; including those in which the completion of one of more async tasks triggers another async task. For example:

 class HeaderBuilder extends CountedCompleter<...> { ... 
 class BodyBuilder extends CountedCompleter<...> { ... }
 class PacketSender extends CountedCompleter<...> {
   PacketSender(...) { super(null, 1); ... } // trigger on second completion
   public void compute() { } // never called
   public void onCompletion(CountedCompleter<?> caller) { sendPacket(); }
 }
 // sample use:
 PacketSender p = new PacketSender();
 new HeaderBuilder(p, ...).fork();
 new BodyBuilder(p, ...).fork();
 }

Author(s):
Doug Lea
Since:
1.8
@SuppressWarnings("restriction")
public abstract class CountedCompleter<T> extends ForkJoinTask<T> {
   private static final long serialVersionUID = 5232453752276485070L;

   
This task's completer, or null if none
   final CountedCompleter<?> completer;
   
The number of pending tasks until completion
   volatile int pending;

   
Creates a new CountedCompleter with the given completer and initial pending count.

Parameters:
completer this task's completer, or null if none
initialPendingCount the initial pending count
   protected CountedCompleter(CountedCompleter<?> completer,
         int initialPendingCount) {
      this. = completer;
      this. = initialPendingCount;
   }

   
Creates a new CountedCompleter with the given completer and an initial pending count of zero.

Parameters:
completer this task's completer, or null if none
   protected CountedCompleter(CountedCompleter<?> completer) {
      this. = completer;
   }

   
Creates a new CountedCompleter with no completer and an initial pending count of zero.
   protected CountedCompleter() {
      this. = null;
   }

   
The main computation performed by this task.
   public abstract void compute();

   
Performs an action when method tryComplete() is invoked and the pending count is zero, or when the unconditional method complete(java.lang.Object) is invoked. By default, this method does nothing. You can distinguish cases by checking the identity of the given caller argument. If not equal to this, then it is typically a subtask that may contain results (and/or links to other results) to combine.

Parameters:
caller the task invoking this method (which may be this task itself)
   public void onCompletion(CountedCompleter<?> caller) {
   }

   
Performs an action when method ForkJoinTask.completeExceptionally(java.lang.Throwable) is invoked or method compute() throws an exception, and this task has not otherwise already completed normally. On entry to this method, this task ForkJoinTask.isCompletedAbnormally(). The return value of this method controls further propagation: If true and this task has a completer, then this completer is also completed exceptionally. The default implementation of this method does nothing except return true.

Parameters:
ex the exception
caller the task invoking this method (which may be this task itself)
Returns:
true if this exception should be propagated to this task's completer, if one exists
   public boolean onExceptionalCompletion(Throwable exCountedCompleter<?> caller) {
      return true;
   }

   
Returns the completer established in this task's constructor, or null if none.

Returns:
the completer
   public final CountedCompleter<?> getCompleter() {
      return ;
   }

   
Returns the current pending count.

Returns:
the current pending count
   public final int getPendingCount() {
      return ;
   }

   
Sets the pending count to the given value.

Parameters:
count the count
   public final void setPendingCount(int count) {
       = count;
   }

   
Adds (atomically) the given value to the pending count.

Parameters:
delta the value to add
   public final void addToPendingCount(int delta) {
      int c// note: can replace with intrinsic in jdk8
      do {} while (!.compareAndSwapInt(thisc = c+delta));
   }

   
Sets (atomically) the pending count to the given count only if it currently holds the given expected value.

Parameters:
expected the expected value
count the new value
Returns:
true if successful
   public final boolean compareAndSetPendingCount(int expectedint count) {
      return .compareAndSwapInt(thisexpectedcount);
   }

   
If the pending count is nonzero, (atomically) decrements it.

Returns:
the initial (undecremented) pending count holding on entry to this method
   public final int decrementPendingCountUnlessZero() {
      int c;
      do {} while ((c = ) != 0 &&
            !.compareAndSwapInt(thiscc - 1));
      return c;
   }

   
Returns the root of the current computation; i.e., this task if it has no completer, else its completer's root.

Returns:
the root of the current computation
   public final CountedCompleter<?> getRoot() {
      CountedCompleter<?> a = thisp;
      while ((p = a.completer) != null)
         a = p;
      return a;
   }

   
If the pending count is nonzero, decrements the count; otherwise invokes onCompletion(org.infinispan.commons.util.concurrent.jdk8backported.CountedCompleter) and then similarly tries to complete this task's completer, if one exists, else marks this task as complete.
   public final void tryComplete() {
      CountedCompleter<?> a = thiss = a;
      for (int c;;) {
         if ((c = a.pending) == 0) {
            a.onCompletion(s);
            if ((a = (s = a).) == null) {
               s.quietlyComplete();
               return;
            }
         }
         else if (.compareAndSwapInt(acc - 1))
            return;
      }
   }

   
Equivalent to tryComplete() but does not invoke onCompletion(org.infinispan.commons.util.concurrent.jdk8backported.CountedCompleter) along the completion path: If the pending count is nonzero, decrements the count; otherwise, similarly tries to complete this task's completer, if one exists, else marks this task as complete. This method may be useful in cases where onCompletion should not, or need not, be invoked for each completer in a computation.
   public final void propagateCompletion() {
      CountedCompleter<?> a = thiss = a;
      for (int c;;) {
         if ((c = a.pending) == 0) {
            if ((a = (s = a).) == null) {
               s.quietlyComplete();
               return;
            }
         }
         else if (.compareAndSwapInt(acc - 1))
            return;
      }
   }

   
Regardless of pending count, invokes onCompletion(org.infinispan.commons.util.concurrent.jdk8backported.CountedCompleter), marks this task as complete and further triggers tryComplete() on this task's completer, if one exists. The given rawResult is used as an argument to setRawResult(java.lang.Object) before invoking onCompletion(org.infinispan.commons.util.concurrent.jdk8backported.CountedCompleter) or marking this task as complete; its value is meaningful only for classes overriding setRawResult.

This method may be useful when forcing completion as soon as any one (versus all) of several subtask results are obtained. However, in the common (and recommended) case in which setRawResult is not overridden, this effect can be obtained more simply using quietlyCompleteRoot();.

Parameters:
rawResult the raw result
   public void complete(T rawResult) {
      CountedCompleter<?> p;
      setRawResult(rawResult);
      onCompletion(this);
      quietlyComplete();
      if ((p = ) != null)
         p.tryComplete();
   }


   
If this task's pending count is zero, returns this task; otherwise decrements its pending count and returns null. This method is designed to be used with nextComplete() in completion traversal loops.

Returns:
this task, if pending count was zero, else null
   public final CountedCompleter<?> firstComplete() {
      for (int c;;) {
         if ((c = ) == 0)
            return this;
         else if (.compareAndSwapInt(thiscc - 1))
            return null;
      }
   }

   
If this task does not have a completer, invokes ForkJoinTask.quietlyComplete() and returns null. Or, if this task's pending count is non-zero, decrements its pending count and returns null. Otherwise, returns the completer. This method can be used as part of a completion traversal loop for homogeneous task hierarchies:
 for (CountedCompleter<?> c = firstComplete();
      c != null;
      c = c.nextComplete()) {
   // ... process c ...
 }

Returns:
the completer, or null if none
   public final CountedCompleter<?> nextComplete() {
      CountedCompleter<?> p;
      if ((p = ) != null)
         return p.firstComplete();
      else {
         quietlyComplete();
         return null;
      }
   }

   
Equivalent to getRoot().quietlyComplete().
   public final void quietlyCompleteRoot() {
      for (CountedCompleter<?> a = thisp;;) {
         if ((p = a.completer) == null) {
            a.quietlyComplete();
            return;
         }
         a = p;
      }
   }

   
Supports ForkJoinTask exception propagation.
      CountedCompleter<?> a = thiss = a;
      while (a.onExceptionalCompletion(exs) &&
            (a = (s = a).) != null && a.status >= 0)
         a.recordExceptionalCompletion(ex);
   }

   
Implements execution conventions for CountedCompleters.
   protected final boolean exec() {
      compute();
      return false;
   }

   
Returns the result of the computation. By default returns null, which is appropriate for Void actions, but in other cases should be overridden, almost always to return a field or function of a field that holds the result upon completion.

Returns:
the result of the computation
   public T getRawResult() { return null; }

   
A method that result-bearing CountedCompleters may optionally use to help maintain result data. By default, does nothing. Overrides are not recommended. However, if this method is overridden to update existing objects or fields, then it must in general be defined to be thread-safe.
   protected void setRawResult(T t) { }
   // Unsafe mechanics
   private static final sun.misc.Unsafe U;
   private static final long PENDING;
   static {
      try {
          = getUnsafe();
          = .objectFieldOffset
               (CountedCompleter.class.getDeclaredField("pending"));
      } catch (Exception e) {
         throw new Error(e);
      }
   }

   
Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple call to Unsafe.getUnsafe when integrating into a jdk.

Returns:
a sun.misc.Unsafe
   private static sun.misc.Unsafe getUnsafe() {
      try {
         return sun.misc.Unsafe.getUnsafe();
      } catch (SecurityException tryReflectionInstead) {}
      try {
         return java.security.AccessController.doPrivileged
               (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
                  public sun.misc.Unsafe run() throws Exception {
                     Class<sun.misc.Unsafek = sun.misc.Unsafe.class;
                     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
                        f.setAccessible(true);
                        Object x = f.get(null);
                        if (k.isInstance(x))
                           return k.cast(x);
                     }
                     throw new NoSuchFieldError("the Unsafe");
                  }});
      } catch (java.security.PrivilegedActionException e) {
         throw new RuntimeException("Could not initialize intrinsics",
               e.getCause());
      }
   }
New to GrepCode? Check out our FAQ X